Размещено на портале Архи.ру (www.archi.ru)

27.01.2020

Измеряй и фиксируй

Мастерская:
HEXAGON

Лазерный сканер Leica BLK360 – самый компактный из существующих, но в то же время достаточно мощный: за короткое время с его помощью можно провести высокоточные обмеры и создать 3D-модель объекта. Как прибор, который легко помещается в рюкзак или сумку, ускоряет процесс проектирования, снижает риски и помогает экономить – в нашем материале.

Зачем нужны обмеры
Обмеры – основа рабочей документации, необходимой для реконструкции, капитального ремонта, дизайна интерьера, а в некоторых случаях и нового строительства. От достоверности исходной документации во многом зависит и качество будущего проекта.

Обмеры необходимы, если:
  • утеряна проектная документация;
  • изменилась функция здания, этажность, эксплуатационные нагрузки;
  • возникли критичные дефекты и повреждения здания;
  • строительство возобновляется спустя длительное время;
  • по соседству с объектом строится новое здание;
  • необходима реставрация или воссоздание. 

Традиционные способы фиксации: карандаш и рулетка 

Архитектурные обмеры – главный способ фиксации особенностей здания. Они включают:

  • масштабные ортогональные чертежи основных проекций здания и его деталей;
  • изображение здания и его фрагментов в рисунках;
  • художественное и документальное фотографирование.

Исчерпывающее представление об объекте может дать, прежде всего, обмерная фиксация. Но обмерные чертежи крайне трудоемки, их исполнение требует времени и массы разнообразных инструментов: линейки, обычные и лазерные рулетки, стальные струны, штангенциркули, щупы, шаблоны, угломеры, уровни, отвесы, лупы, измерительные микроскопы.

Схемы обмера методом триангуляции
Схемы обмера методом триангуляции
© HEXAGON

Самый распространенный инструмент – лазерная рулетка: дешевая, компактная и простая в эксплуатации. С ее помощью можно провести обмеры помещений и небольших зданий с простой геометрией. Но неизбежны погрешности: наводить точку приходится с руки, не всегда просто соблюдать горизонтальность, иногда прямая видимость между точками отсутствует. Обмерщик должен постоянно подстраиваться к геометрии помещения и выбирать наиболее подходящий способ – засечки, полярный, по столбам и др.
Лазерный дальномер
Лазерный дальномер
© HEXAGON

Для более точных и сложных работ больше подходит геодезическое оборудование. В этой статье речь пойдет о методе наземного лазерного сканирования и конкретной модели лазерного сканера – BLK360.

Лазерное сканирование

Наземное лазерное сканирование – самый полный и точный из современных методов обмера. Лазерный дальномер встроен в прибор, направление луча изменяется автоматически, сервопривод измеряет его вертикальные и горизонтальные углы.

Пример проекта по сканированию помещения в Autodesk Recap Pro
Пример проекта по сканированию помещения в Autodesk Recap Pro
© HEXAGON

Современный лазерный 3D-сканер производит более миллиона измерений в секунду и сохраняет полученные цифровые данные в виде массива трехмерных координат – облака точек, которое фактически представляет собой 3D-модель объекта съемки. Каждая точка, помимо трех геопространственных координат, несет информацию о цвете, который распознается за счет интенсивности возвращаемого сигнала. Благодаря встроенным камерам возможно получить весь массив данных в цветах, соответствующих реальным.
Пример обработанного облака точек, 3D-модель жилого дома в Швейцарии. HEXAGON
Пример обработанного облака точек, 3D-модель жилого дома в Швейцарии.
HEXAGON
Пример обработанного облака точек, 3D-модель исторического квартала.  HEXAGON
Пример обработанного облака точек, 3D-модель исторического квартала.
HEXAGON
Пример обработанного облака точек HEXAGON
Пример обработанного облака точек
HEXAGON
Пример обработанного облака точек, 3D-модель HEXAGON
Пример обработанного облака точек, 3D-модель
HEXAGON

Лазерный сканер, таким образом, рисует самую полную «картину» объекта, из которой легко извлечь нужные параметры. Это самый быстрый способ получения информации, не требующий никакой обработки: необходимо просто импортировать данные на компьютер и дальше работать с «облаком».

Если же нужны оформленные материалы, то облако точек экспортируется в САПР-системы, где и создаются точные обмерные чертежи, планы, разрезы, сечения или проводится построение 3D-моделей. Работу с облаками точек поддерживают Autodesk, Graphisoft, NanoCad, обменными форматами служат распространенные pts, las, e57 и другие. Существует ряд бесплатных программ-просмотрщиков, позволяющих производить замеры: Autodesk Reсap, Leica TrueView и другие. 

Лазерный сканер Leica BLK360
Швейцарская компания Leica Geosystems создала лазерный сканер Leica BLK360, который объединяет плюсы всех методов обмеров. Он легкий и компактный: весит не больше килограмма, помещается в сумку или рюкзак, что позволяет сканировать в любое время и в любом месте.
Лазерный сканер Leica BLK360
Лазерный сканер Leica BLK360
© HEXAGON

Вот лишь некоторые преимущества Leica BLK360:
  • лазер сканирует 360 000 точек в секунду на расстоянии до 60 метров;
  • сенсор работает беспрерывно два часа на одной зарядке батареи;
  • можно работать в помещении и на улице, при температуре +5-40°С;
  • погрешности минимальны: сумма ошибок углов и расстояния дает погрешность величиной в 6 мм на расстоянии 10 м и примерно 8 мм на расстоянии в 20 м;
  • 15Мп система из 3 камер, сферическая HDR-фотопанорама и LED-вспышка;
  • три режима плотности сканирования;
  • со сканером легко работать: достаточно посмотреть обучающие видеоролики общей продолжительностью около 25 минут и соблюдать методологию съемки.
Лазерный сканер Leica BLK360
Лазерный сканер Leica BLK360
© HEXAGON

Достаточно нажать одну кнопку – и меньше чем за три минуты BLK360 выполнит панорамное сканирование окружающего пространства с захватом фотоизображений. Вся информация транслируется на планшет iPad Pro в приложение для дистанционного управления и контроля данных Autodesk Recap.
 


BLK360 в действии: примеры решаемых задач

Первичный обмер и контроль работ
Рассмотрим, как работает BLK360 на примере разработки дизайн-проекта. Объект – трехкомнатная квартира общей площадью 99 м2. Исходными данными является план БТИ, он был оцифрован и перенесен в среду Autodesk AutoCAD. Углы комнаты освободили, развертка и подготовка оборудования заняла не более пяти минут.
План БТИ  © HEXAGON
План БТИ
© HEXAGON
 Чертеж в AutoCAD © HEXAGON
Чертеж в AutoCAD
© HEXAGON
Подготовка помещения и установка оборудования © HEXAGON
Подготовка помещения и установка оборудования
© HEXAGON
Подготовка помещения и установка оборудования © HEXAGON
Подготовка помещения и установка оборудования
© HEXAGON

За час выполнили 17 установок лазерного сканера. Переданные на планшет панорамные изображения помогли контролировать верность выбора места и полноту получаемых данных. При необходимости можно было прямо на сферической панораме добавлять промеры и комментарии.
Пример комментирования в проекте © HEXAGON
Пример комментирования в проекте
© HEXAGON
Рабочий проект в приложении и программе Recap © HEXAGON
Рабочий проект в приложении и программе Recap
© HEXAGON
Рабочий проект в приложении и программе Recap © HEXAGON
Рабочий проект в приложении и программе Recap
© HEXAGON

Из облака точек удалили ненужные элементы – строительный мусор, мебель – и загрузили его в Autodesk. С помощью плагина CloudWorx в среде AutoCAD построили сечения и в полуавтоматическом режиме отрисовали стены. На весь процесс обработки ушло около 3,5 часов.
Облако точек в среде AutoCAD © HEXAGON
Облако точек в среде AutoCAD
© HEXAGON
3D-вид объекта © HEXAGON
3D-вид объекта
© HEXAGON

Сравним полученные контуры стен с чертежом, выполненным по плану БТИ: зеленым линиям соответствуют действительное положение стен, белым – их плановое положение. Как видим, разница в положении стен в некоторых местах существенна. Стало возможно сравнить площади помещений: здесь расхождений найдено не было. Обновленные данные передали в дизайнерское бюро – можно без опаски продолжить работу.
Примеры расхождения планового (белый) и фактического (зеленый) положения стен  © HEXAGON
Примеры расхождения планового (белый) и фактического (зеленый) положения стен
© HEXAGON
Примеры расхождения планового (белый) и фактического (зеленый) положения стен  © HEXAGON
Примеры расхождения планового (белый) и фактического (зеленый) положения стен
© HEXAGON
Примеры расхождения планового (белый) и фактического (зеленый) положения стен  © HEXAGON
Примеры расхождения планового (белый) и фактического (зеленый) положения стен
© HEXAGON

Первичное сканирование подходит для уточнения геометрии помещений, вычисления необходимых объемов демонтажа и разработки дизайн-проекта.

Сканирование можно производить несколько раз для фиксирования и контроля выполнения работ. На изображениях представлены такие работы как перенос проема, установка швеллера, заделывание проема газоблоками и чистовая отделка.
Различные этапы сканирования помещений  © HEXAGON
Различные этапы сканирования помещений
© HEXAGON
Различные этапы сканирования помещений  © HEXAGON
Различные этапы сканирования помещений
© HEXAGON
Различные этапы сканирования помещений  © HEXAGON
Различные этапы сканирования помещений
© HEXAGON
Различные этапы сканирования помещений  © HEXAGON
Различные этапы сканирования помещений
© HEXAGON
Ремонтные работы © HEXAGON
Ремонтные работы
© HEXAGON
Дизайн-проект © HEXAGON
Дизайн-проект
© HEXAGON

Координирование и контроль положения внутренних инженерных сетей
Еще одна из решаемых задач – фиксация положений внутренних инженерных сетей. В данном примере это электропроводка и кабель-каналы для сплит-систем кондиционирования. Положения штроб фиксировались, потенциально опасные зоны наносились прямо на облако точек. По этим данным стало возможно в любой момент получить привязку для любого элемента и избежать попаданий в сети при дальнейших работах.
Облако точек места штробления под кабеля кондиционеров © HEXAGON
Облако точек места штробления под кабеля кондиционеров
© HEXAGON
Облако точек места штробления под силовой кабель © HEXAGON
Облако точек места штробления под силовой кабель
© HEXAGON
Векторизация потенциально опасных зон для иных работ © HEXAGON
Векторизация потенциально опасных зон для иных работ
© HEXAGON
Изометрический вид внутренних силовых сетей © HEXAGON
Изометрический вид внутренних силовых сетей
© HEXAGON

Поиск отклонений поверхностей от вертикали
Данные дополнительно передали в специализированное настольное ПО для обработки облаков точек – 3DReshaper. После чего построили идеально вертикальные «теоретические» стены и сравнили фактическую геометрию стены с этой идеальной моделью. Полученный результат позволил оперативно найти дефект, определить его площадь и, как следствие, подсчитать количество необходимого материала.
Сравнение фактической геометрии стены с идеальной моделью.  © HEXAGON
Сравнение фактической геометрии стены с идеальной моделью.
© HEXAGON
Сравнение фактической геометрии стены с идеальной моделью.  © HEXAGON
Сравнение фактической геометрии стены с идеальной моделью.
© HEXAGON
Сравнение фактической геометрии стены с идеальной моделью.  © HEXAGON
Сравнение фактической геометрии стены с идеальной моделью.
© HEXAGON

График и шкала цветовой идентификации справа от изображения настраиваемые, они помогают понять, какое число точек входит в выбранный пользователем интервал отклонения. В данном случае все точки, попадающие в диапазон отклонений от -5 до +5 мм от идеально вертикальной стены, имеют насыщенный зеленый цвет, а точки, значения которых отклоняются на 2 мм, исключались из сравнения. Всегда возможно получить развертку стены или любого необходимого участка.
Сравнение фактической геометрии стены с идеальной моделью.
Сравнение фактической геометрии стены с идеальной моделью.
© HEXAGON

Подсчет объема материалов
Рассмотрим решение обычной и довольно однообразной задачи – подсчет объема штукатурки. Согласно технической документации норма расхода смеси соответствует 8,5 кг / 1 м2 при толщине слоя в 10 мм.

Существует несколько традиционных методов расчета, мы рассмотрим два из них:
  • приблизительный: толщину штукатурного слоя принимают равной 10-15 мм, дополнительно учитывают запас в 10% от эталонного показателя, с округлением в большую сторону.
  • точечных измерений: среднюю толщину слоя определяют с учетом угловых отклонений. Для этого поверхность, на которую будут наносить штукатурный состав, промеряют в трех местах. Полученные при провешивании значения суммируют и делят по числу замеров на три. 
Вычисления просты, но весьма приблизительны. Второй метод требует подготовки, иногда в виде установки штукатурных маяков. Профессионализм штукатурщика тоже является весомым показателем.
Облако точек и картограмма отклонений от вертикали
Облако точек и картограмма отклонений от вертикали
© HEXAGON

Посчитаем разными методами, сколько материала потребуется, чтобы выровнять одну стену площадью 9,5 м2
  • Приблизительный: вес материала без запаса – 81 кг и 89 кг с 10% запасом. 
  • Точечных измерений: точечные измерения на предмет вмятин и выпучин дали значения 11, 8 и 10 мм. Средняя толщина ~ 10 мм. Вес материала без запаса – 81 кг и 89 кг с 10% запасом. При данном методе результаты сильно зависят от случайного выбора места замера, даже если геометрия меток выбрана верно. 
  • Вычисление объема. Сравнив фактическую поверхность стены с идеальной, получили карту отклонений. Заметно, что фигура имеет отклонения от проектной в обе стороны, поэтому вычислили объем, заключенный между проектируемой вертикальной стеной и фактическим положением, он составляет 0,083 м3. Стену рассчитываем выводить на 10 мм, для этого потребуется 71 кг. Закладывать запас материала в таком случае не нужно.
Стоит отметить, что во всех случаях потребуется три мешка штукатурки весом 30 кг. Образовавшийся излишек можно использовать на других стенах, но первоначальный точный подсчет поможет избежать чрезмерных запасов и, как следствие, сэкономить. Особенно учитывая, что суммарная площадь стен равна 280 м2.

Проверка ровности стяжки
Ровность стяжки проверяется с помощью двухметровой рейки-правила. Рейку прикладывают к стяжке в нескольких местах в разных направлениях. По существующим строительным нормам стяжка считается ровной, если зазор между поверхностью стяжки и правилом не превышает 4 мм.

Необходимо также проверить уклон поверхности стяжки пола к горизонту. Этот значение в любом месте стяжки не должно быть больше 0,2%, а в абсолютном значении – 50 мм. Так, например, если длина помещения равна 3 метрам, то отклонение не должно превышать 6 мм. В случае, если обнаружились какие-то дефекты, заказчик вправе вызвать эксперта. Если экспертиза покажет, что претензии обоснованы, то все затраты на работу эксперта и устранение брака обязаны оплатить строители.

Наземное лазерное сканирование позволяет контролировать большие площади, затрачивая минимум времени. А достоверность и полнота данных позволят полностью исключить пропуск проблемных участков. Подобный метод контроля применялся при строительстве торгового центра в Липецке.
Проверка ровности стяжки
Проверка ровности стяжки
© HEXAGON

Выводы
Подытожим, лазерное сканирование имеет ряд существенных преимуществ, а именно:
  • полнота получаемых данных исключает повторные визиты для дополнительных обмеров;
  • информацию легко воспринимать и интерпретировать благодаря визуализации и легкой навигации в программном обеспечении;
  • совмещение данных сканирования с фотографией позволяет легко комментировать и маркировать сложные узлы;
  • первоначального материала может быть достаточно для разработки дизайн-проектов;
  • гибкость работы с данными позволяет подобрать наиболее удобную технологическую схему для конечного пользователя.